

Inequality Indices in Multi-Agent Resource Allocation - A Distributed Approach

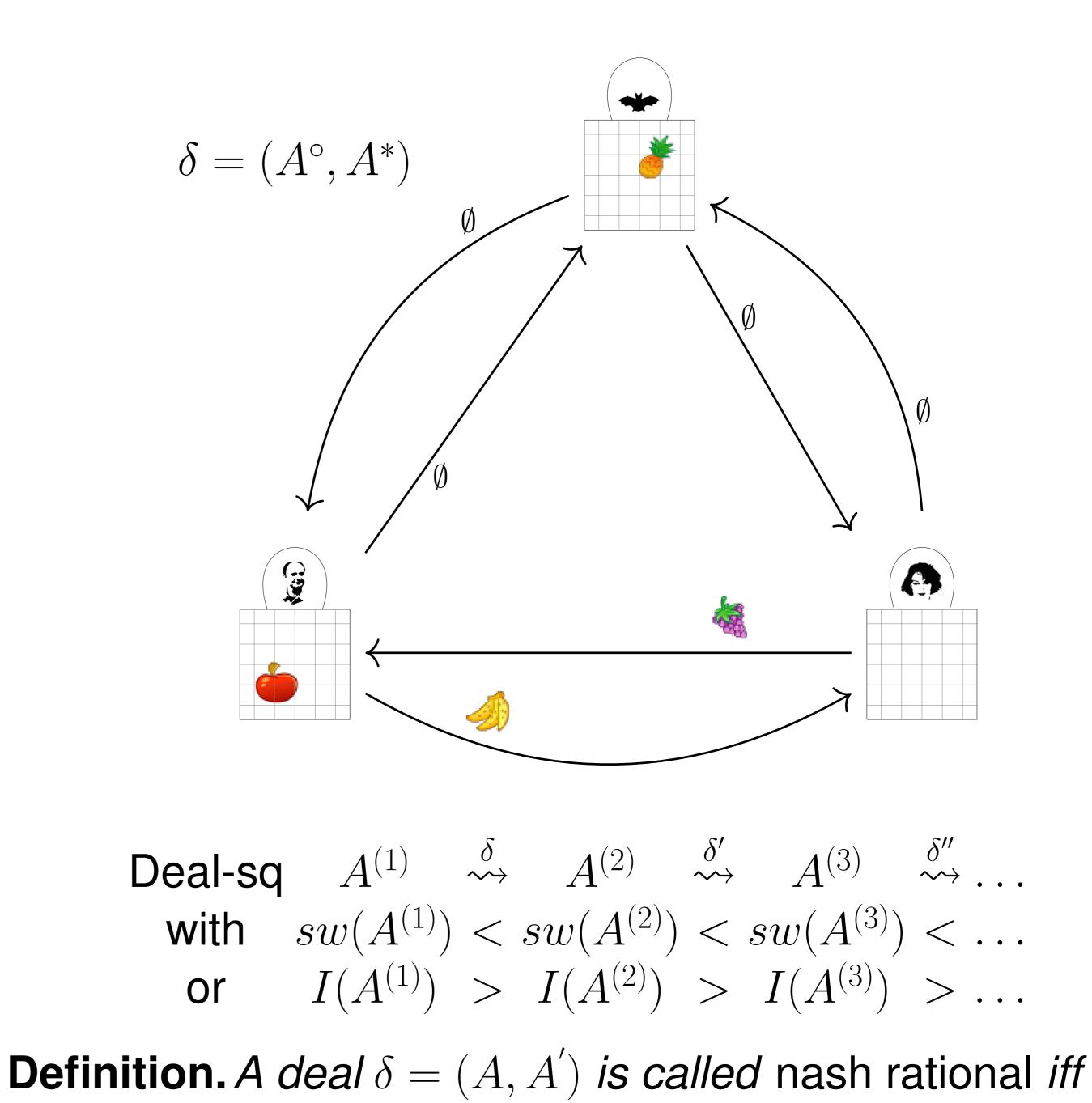
(Summer School on Computational Social Choice, San Sebastian 2016)

Sebastian Schneckenburger^a

^ajoint work with Britta Dorn & Ulle Endriss

Setting

Definition. (MARA-framework:) We consider a finite set of agents $\mathcal{N} = \{1, \ldots, n\}$ and a finite set \mathcal{G} of goods,



where every agent $i \in \mathcal{N}$ has preferences over all possible bundles of goods $B \in 2^{\mathcal{G}}$ given by utility functions from the set $\mathcal{U} = \{u_i : 2^{\mathcal{G}} \to \mathbb{R}^+ : i \in \mathcal{N}\}.$

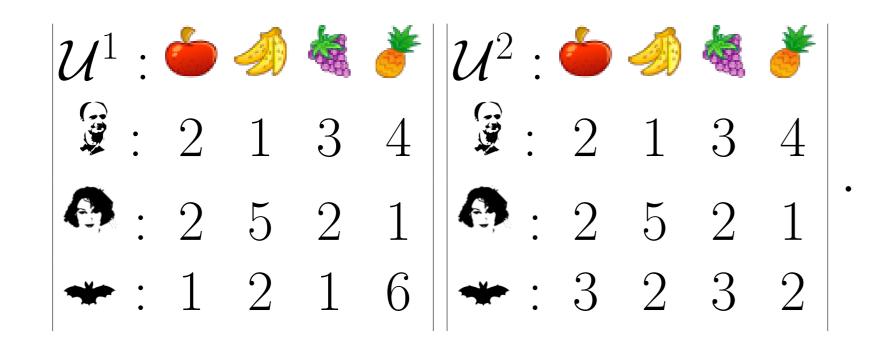
Definition. (Fairness I) Maximising social welfare

• $sw_{util}(A) = \sum_{i=1}^{n} u_i(A(i))$ • $sw_{nash}(A) = \prod_{i=1}^{n} u_i(A(i))$

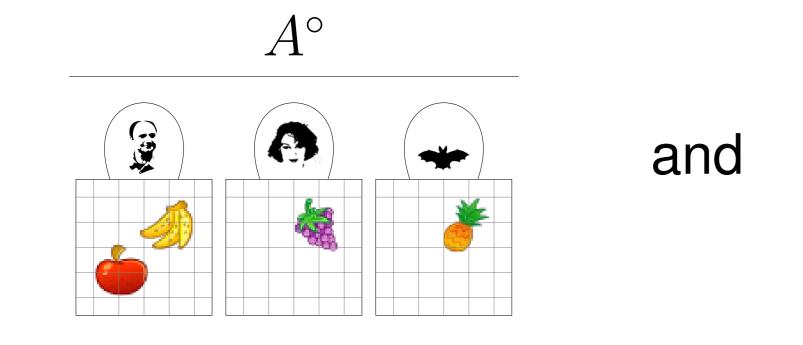
Definition. (Fairness II) Minimizing inequality

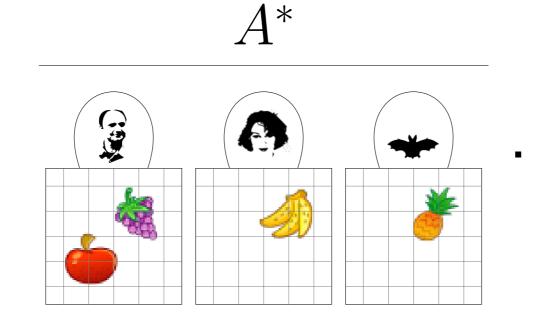
 $I_{nash}(A) = 1 - \frac{\sqrt[n]{\prod_{i=1}^{n} u_i(A)}}{\frac{1}{n} \sum_{i=1}^{n} u_i(A(i))}$

Consider the two scenarios $\langle \mathcal{N}, \mathcal{G}, \mathcal{U}^1 \rangle$ and $\langle \mathcal{N}, \mathcal{G}, \mathcal{U}^2 \rangle$ with $\mathcal{N} = \{ \text{Alfred } \mathcal{D}, \text{Rachel } \mathcal{O}, \text{Bruce } \bigstar \}, \}$ $\mathcal{G} = \{\bullet, \mathscr{A}, \bigstar, \bullet\}^*$ and the two sets \mathcal{U}^1 and \mathcal{U}^2 of additive utility functions :



Now we will have a look at the allocations

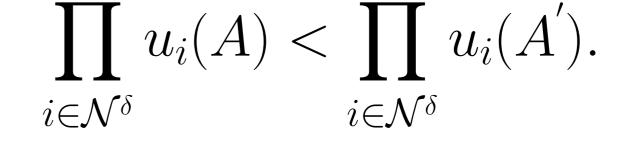




	$\langle \mathcal{N}, \mathcal{G}, \mathcal{U}^1 angle$			$\langle \mathcal{N}, \mathcal{G}, \mathcal{U}^2 angle$	
	A°		A^*	A°	A^*
sw_{util}	11	<	16	7	< 12
sw_{nash}	36	<	150	12	< 50

 A° is fairer with respect to sw_{util}/sw_{nash} in both scenarios.

With respect to I_{nash} , A°



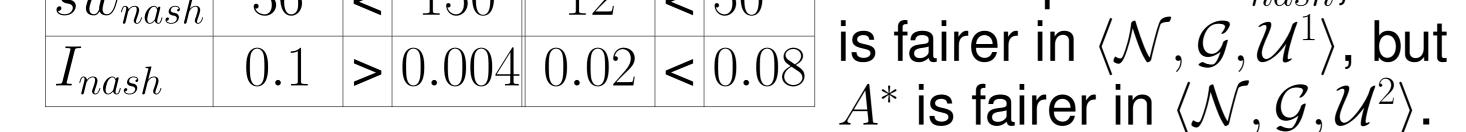
Theorem. Any sequence of nash rational deals will eventually terminate in an allocation with max sw_{nash} .[†] Problem for inequality indices: there is no local rationality criterion in the classical sense.

 \rightarrow Trick: calculate $\sum_{i \in \mathcal{N}} u_i(A(i))$ with local information.

$$M(A) = \sum_{i \in \mathcal{N}} u_i(A(i))$$
$$M(A') = M(A) + \sum_{i \in \mathcal{N}^{\delta}} \left(u_i(A') - u_i(A) \right)$$

Definition. A deal $\delta = (A, A')$ is called Atkinson index rational (AIR) iff $\frac{\sqrt[n]{\prod_{i\in\mathcal{N}^{\delta}}u_i(A)}}{M(A)} > \frac{\sqrt[n]{\prod_{i\in\mathcal{N}^{\delta}}u_i(A')}}{M(A')}.$

Theorem. Any sequence of AIR-deals will eventually terminate in an allocation with min I_{nash} .



Distributed Approach

Idea: calculate an optimum not at once, but with a lot of "small" improvements, using only local data.

1.1 Deals

A deal δ is a tuple of two (distinct) allocations A and A'. The set of agents involved in a deal is denoted by \mathcal{N}^{δ} .

Results

2.1 Necessary Deals

Theorem. For every deal $\delta = (A, A')$ there exist utility functions $(u_i)_{i \in \mathcal{N}}$ and a starting allocation, such that the deal δ is necessary for reaching an allocation with a minimal possible value of I_{nash} .

2.2 Communication Complexity

Theorem. A sequence of AIR deals can consist of at most $|\mathcal{N}|^{|\mathcal{G}|} - 1$ deals.

Universität Tübingen ·Wilhelm-Schickard-Institut für Informatik ·Mathematische Strukturen in der Informatik Sand 13 · 72076/Tübingen · Germany · Telefon +49 7071 29-70499 · sebastian.schneckenburger@uni-tuebingen.de

^{*(}Fruit-)lcons by: www.FastIcon.com

[†]S. Ramezani and U. Endriss. Nash social welfare in multiagent resource allocation. In Proceedings of the 11th International Workshop on Agent-Mediated Electronic Commerce (AMEC-2009), May 2009.