Frequency Based Analysis of Voting Rules

Swarnendu Chatterjee, Hans Peters, and Ton Storcken Maastricht University, Q.E. Department

1. Introduction

 as a superposition of unimodal distributions.
4. Disturbances

Pairwise Rule For a distribution with

- Unimodal structure
- Possibly with unequal frequencies for all the preferences having same distance from the mode.
- Larger frequencies for the first half of the distribution compared to the respective second half of the distribution.
selects mode as the outcome.

Borda Rule For a distribution with

- Unimodal structure
- Equal frequency for all the preferences having same distance from the mode.
- Larger frequencies for the first half of the distribution compared to the respective second half of the distribution

3. Unimodal Distribution

For a unimodal distribution all well known rules like : Condorcet like rules, Scoring rules, Coombs rule, Kemeny like rules choose mode as the outcome. We can characterise these rules by the following conditions.

- Monotonicity means that if in comparison of
profiles p and q the preference among the agents increases when going from p to q, then this preference at the outcomes should not decrease.
- Discrimination means that at a profile p where for two alternatives x and y every linear ordering R at which x is strictly preferred to y strictly outnumber linear ordering $\tau_{x y} R$ at which y is strictly preferred to x the preference rule cannot be indifferent between x and y.
- It is natural to go one step further and to impose that in those situations x should be strictly preferred to y. This condition is referred to as positive discrimination

4. Multimodal Distribution

- We define multimodal distributions as superimpositions of several unimodal distribution.
- Consider a distribution formed by superimposition of two unimodal distribution. If (x, y) belongs to the intersection of two modes then (x, y) is chosen as the outcome
- The same holds true for a distribution formed by superimposition of more than two unimodal distribution
- It is clear to see that if the modes are closely related (w.r.t. Kemeny distance) then it is easier to identify the outcome.
- If the modes are far away from each other then not much can be said about the choices made by the rule. In the extreme case when modes are exactly opposite then nothing can be said.
- Unimodal structure
- Equal frequency for all the preferences having same distance from the mode.
- Larger frequencies for the first portion of the distribution compared to the respective second portion of the distribution.
- First portion is till $k^{\max }=\left\lceil\frac{1}{2}\binom{m-1}{2}\right\rceil+m-2$.

Contact		
Email swarnendu.stat@gmail.com Phone +31433884854	Mobile +31617509371	

